Imagination perspective affects ratings of the likelihood of occurrence of autobiographical memories

Benjamin U. Marsh, Kathy Pezdek⁎, Shirley T. Lam

Department of Psychology, Claremont Graduate University, United States

A R T I C L E I N F O
Article history:
Received 19 December 2013
Received in revised form 23 April 2014
Accepted 9 May 2014
Available online 25 May 2014

PsycINFO classification:
2340: Cognitive Processes
2343: Learning and Memory

Keywords:
Autobiographical memory
False memory
Imagination
Imagination inflation
Visual perspective
Imagery perspective

A B S T R A C T
Two experiments tested and confirmed the hypothesis that when the phenomenological characteristics of imagined events are more similar to those of related autobiographical memories, the imagined event is more likely to be considered to have occurred. At Time 1 and 2-weeks later, individuals rated the likelihood of occurrence for 20 life events. In Experiment 1, 1-week after Time 1, individuals imagined 3 childhood events from a first-person or third-person perspective. There was a no-imagination control. An increase in likelihood ratings from Time 1 to Time 2 resulted when imagination was from the third-person but not first-person perspective. In Experiment 2, childhood and recent events were imagined from a third- or first-person perspective. A significant interaction resulted. For childhood events, likelihood change scores were greater for third-person than first-person perspective; for recent adult events, likelihood change scores were greater for first-person than third-person perspective, although this latter trend was not significant.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since 1994, an abundance of research in cognitive psychology has assessed the conditions under which false events are more or less likely to be planted in memory. Among these studies, one manipulation reported to increase the probability of planting false events in memory is the process of imagining the event. Mazzoni and Memon (2003), for example, reported that after imagining a target event, 40% of subjects reported having a memory for the event, compared to only 23% of those in the exposure-only condition (see Garry & Polaschek, 2000, for a review of the research on what has become known as imagination inflation, however see Pezdek & Eddy, 2001, for a discussion of when this effect simply reflects regression toward the mean).

Pezdek, Finger, and Hodge (1997) have suggested one model of how this process occurs. According to this model, if a suggested autobiographical event is judged to be plausible, that is, it is perceived to have a high base-rate probability of occurrence, a memory for this event can be constructed from details of the generic event script, as well as from details of related episodes of the event. Memory for the event thus becomes constructed from this related information in memory. Imagining an autobiographical event then would encourage individuals to activate relevant generic information and specific details already in memory and to use this information to construct the memory for the suggested event. Based on this interpretation, imagining an event is more likely to inflate an individual’s belief that the event actually occurred if that event is imagined from a visual perspective more similar to how the event-related information is retained in memory. Our study tests this hypothesis.

It is well documented that whereas older memories are more likely to be recalled from a third-person than a first-person visual perspective, more recent memories are more likely to be recalled from a first-person than a third-person perspective (for a review see Rice, 2010). In the first empirical study of visual perspective, Nigro and Neisser (1983) had undergraduate subjects recall memories for eight specific life events. After recalling each memory, they decided whether the recalled memory was mentally viewed from a first-person or third-person perspective, or both alternating. They then estimated the date of the described event. Memories reported to have been recalled from the first-person perspective were significantly more recent (M = 15 months ago) than those recalled from the third-person perspective (M = 35 months ago). Similar results were reported by Robinson and Swanson (1993) and Sutin and Robins (2007).

Together, these results suggest that over time there is a shift from using the first-person perspective to the third-person perspective to retrieve autobiographical memories. This shift has been accounted for by (a) a decrease over time in accessible visual details in the memory...
trace (Piolino et al., 2006; Rubin, Burt, & Fifield, 2003; Talarico & Rubin, 2003), and, as detailed memory fades, (b) an increase in dependency on reconstructive processes during recall (Nigro & Neisser, 1983; Robinson & Swanson, 1993). Hence, unlike memories for recently experienced events, reconstructed memories for remote events are more likely to be from the third-person perspective. This suggests that the phenomenological characteristics of childhood events imagined from the third-person perspective are more likely to match the phenomenological characteristics of reconstructed true childhood memories than those imagined from the first-person perspective. This study tests the hypothesis that when the phenomenological characteristics of an imagined event – specifically those that relate to visual perspective – are more similar to those of related events in memory, the imagined event is more likely to be considered to have occurred.

Specifically, Experiment 1 tests whether imagination inflation for childhood events is modulated by imaging the event from the first-person versus third-person perspective. At Time 1 and then two weeks later at Time 2, adult subjects rated each of the 20 events on the Life Events Inventory (LEI), as to whether the event had occurred to them in childhood. The LEI is simply a list of 20 life events, each of which is rated in terms of the likelihood of occurrence in one's past (see Appendix A). One week after Time 1, subjects were directed to imagine two of three LEI target events from either the first-person or the third-person perspective. Given that childhood events are more likely to be retained in a third-person than a first-person perspective, childhood events imagined from a third-person perspective are likely to share more phenomenological properties with remembered childhood events than those imagined from a first-person perspective. It is thus predicted that greater increases in ratings of the likelihood of occurrence from Time 1 to Time 2 will result for childhood events imagined from the third-person than the first-person perspective.

2. Experiment 1

2.1. Method

2.1.1. Subjects and design

Subjects were recruited from psychology classes at colleges in the Los Angeles metropolitan area. G*Power analysis confirmed that at least 36 subjects were required to detect effects with an effect size of $d = .35$, alpha = .05 and power = .80 (Faul, Erdfelder, Lang, & Buchner, 2007). Consistent with our previous research (Pezdek, Blandón-Gitlin, & Gabbay, 2006) we specified two exclusion criteria in both experiments: (a) producing LEI ratings that were either all 1's or 8's at either T1 or T2, or (b) providing a rating other than 1 at either Time 1 or Time 2 on one of the three unrealistic LEI events (“won a million dollars”, “shook hands with the President”, “played for the LA Lakers”). These three events were included to monitor whether subjects were paying attention and providing credible answers. Seven subjects met the first exclusion criterion and were not included in the analyses. No subjects met the second exclusion criterion. Multivariate outliers were analyzed on the dataset utilizing the Mahalanobis distance statistic as recommended by Tabachnick and Fidell (2007). The Mahalanobis distance statistic averages the means and variances of all dependent measures into a centroid point to which each individual subject is compared. If a subject’s Mahalanobis distance score is greater than the cutoff (determined by a chi-square distribution where df is the number of dependent measures, and alpha is .01) it is considered a multivariate outlier. Following the examination of Mahalanobis distances compared to the critical cutoff value 11.34, no subjects were identified as multivariate outliers. A total of 47 subjects was included in all subsequent analyses ($M_{age} = 20.15$ years, $SD = 3.52$, 19 males and 28 females).

The study was a within-subjects design with 3 perspective conditions (first-person perspective, third-person perspective, and no-imagination control).

2.1.2. Procedure and materials

The study included three phases. In the first phase at Time 1, subjects completed the 20-item LEI similar to that used by Pezdek et al. (2006); see Appendix A. Three of these 20 LEI items served as target events: “found a $10 bill in a parking lot,” “broke a window with your hand,” and “were almost hit by a car.” Subjects rated the likelihood of occurrence for each LEI event on a scale from 1 (“definitely did not happen to me prior to age 10”) to 8 (“definitely did happen to me prior to age 10”). No time limit was imposed to complete this task.

One week later, subjects returned for the intervention phase. Each participant was given a packet to complete self-paced. Each packet contained imagination instructions and two of the three target events from the LEI. Subjects were given directions and guided to imagine one childhood target event from the first-person perspective and one from the third-person perspective. Similar to the procedures of Garry, Manning, Loftus, and Sherman (1996) and Pezdek et al. (2006), a no-imagination control condition was used in which the third target event was simply not presented in the intervention phase. The information about each of the two imagined target events was presented on a separate page. The assignment of the three target items to the three within-subjects perspective conditions, and the order of presenting those conditions were counterbalanced across subjects. Each of the three target events served equally often in each of the three perspective conditions.

The imagining instructions given to subjects for the two imagined target events were similar to those used by Pezdek et al. (2006) with the addition of specific instructions guiding subjects to use either the first-person or third-person perspective during imagination. Imagination instructions from the first-person perspective were the following: I want you to take a few minutes and focus on generating a clear image in your mind of yourself as a 7-year-old child, finding a $10 bill in a parking lot. Imagine this as if you are re-experiencing the event. Visualize what is happening through your own eyes. In other words, you see things happening from your own perspective.

In the third-person perspective condition, the italicized text above was replaced with the following text:

Imagine this as if you are a spectator of the event. Visualize what is happening through the eyes of another person watching you. In other words, you see things happening from someone else’s perspective.

After each event was imagined, subjects were instructed to write a detailed description of their image of the event. In the no-imagination control condition, the third target event was simply not presented in the intervention phase.

Next subjects completed the six-item questionnaire used by McIsaac and Eich (2002) to assess self-reported qualitative ratings of the two imagined events. Subjects first rated the total amount of time they were able to imagine each event using a scale ranging from 0% (“never”) to 100% (“always”), in 10% increments. The following five additional questions were then rated on a 7-point scale: How strongly was the perspective maintained, how difficult was it to maintain the perspective, to what degree did the perspective influence imagining of the event, how rich in detail was their image, and how rich in emotion was their image.

One week after the intervention phase, at Time 2, subjects completed the test phase in which they filled out the LEI a second time, again providing likelihood of occurrence ratings for each of the 20 events just as they had done at Time 1.

2.2. Results and discussion

2.2.1. LEI scores

First, the mean LEI scores for target items at Time 1, presented in the left half of Table 1, did not significantly differ across the three perspective conditions, $F(2, 45) = 0.735, p = .485, \eta^2_p = .032$ (Hotelling’s Trace).
In addition, similar to the results of Pezdek et al. (2006) Time 1 ratings averaged 2.93 (on the 1 to 8 scale), reducing concerns about ceiling and floor effects in the baseline data. Thus, following suggestions of Pezdek et al. (2006) and others, all subsequent analyses were performed on LEI change scores from Time 1 to Time 2 (see right half of Table 1). It is the LEI change scores that reflect the extent to which ratings of the likelihood of each event increased or not as a result of the intervention.

A repeated measures ANOVA revealed that LEI change scores significantly differed across the three perspective conditions, F(2, 88) =5.619, p = .005, ηp² = .113 (Hotelling’s Trace). Using one-tailed Bonferroni post hoc analyses, as our predictions were directional, LEI change scores were found to be greater in the third-person perspective (M = 1.111, SD = 2.177) than the control condition (M = 0.044, SD = 1.186), mean difference = 1.067 (SD = 2.407), p = .008 [CI95%: LL = 0.163, UL = 1.970]. The first-person perspective (M = 0.466, SD = 1.517) did not differ significantly from the third-person perspective, mean difference = 0.644 (SD = 2.112), p = .07 [CI95%: LL = −0.139, UL = 1.428] or the control condition, mean difference = 0.422 (SD = 1.846), p = .204 [CI95%: LL = −0.270, UL = 1.114].

Imagining childhood events from a third-person perspective but not from a first-person perspective led to a significant increase in likelihood of occurrence ratings for LEI target events. Given that childhood events are more likely to be reconstructed from a third-person than a first-person perspective, these results suggest that when a childhood event is imagined from a third-person perspective, it is more likely to have the phenomenological properties of an experienced childhood event, and thus is more likely to produce an inflated likelihood of occurrence rating at Time 2. In short, when the phenomenological properties of an imagined event – specifically here those associated with visual perspective – are more similar to those of related events in memory, the imagined event is more likely to be considered to have occurred.

2.2.2. Self-reported qualitative ratings of imagined events

A multivariate analysis (MANCOVA) was conducted to test for differences between visual perspectives (first-person and third-person) on responses to the six phenomenological quality questions of McIsaac and Eich (2002). No significant difference between visual perspectives on responses to phenomenological quality questions resulted, F(6, 40) = 1.053, p = .406, ηp² = .136 (Hotelling’s Trace). These findings suggest that it was the visual perspective of the imagined event per se that affected ratings of the likelihood that each event had occurred in childhood and not qualitative differences in the intensity or detail of the image.

3. Experiment 2

3.1. Introduction

In Experiment 1, imagining childhood events from a third-person perspective significantly increased ratings of the likelihood that the events had occurred. Experiment 2 tests if this finding is a more general one that relates to similarities between the visual perspective of imagined events and that of memories for related events. Experiment 2 was a replication of Experiment 1 with both recent and childhood events imagined from the first-person or third-person perspective. A no-imagination control condition was again included.

While childhood memories are more frequently associated with the third-person perspective, recent memories are more frequently characterized as having a first-person perspective (Nigro & Neisser, 1983; Robinson & Swanson, 1993; Sutin & Robins, 2007). Thus, it is expected that the phenomenological experience of a first-person perspective is a common characteristic of autobiographical memories for recent events. Consequently, in Experiment 2 it is predicted that the effect of visual perspective on imagination inflation will show a different pattern for recent and childhood memories. Specifically, it is predicted that for childhood events, the third-person perspective will lead to greater LEI change scores than the first-person perspective; however, for recent events, the first-person perspective will lead to greater LEI change scores than the third-person perspective.

3.2. Method

3.2.1. Subjects and design

Subjects in Experiment 2 were recruited using the same methods as in Experiment 1. No subjects in Experiment 1 were in Experiment 2. G*Power analysis confirmed that at least 35 subjects were required to detect effects with an effect size of d = .35, alpha = .05 and power = .80. The same exclusion criteria from Experiment 1 were utilized in Experiment 2. Five subjects were excluded based on the first criterion; they produced LEI ratings that were either all 1’s or 8’s at either T1 or T2. Two subjects were excluded based on the second criterion; they provided a rating other than 1 at either Time 1 or Time 2 on one of the three unrealistic LEI events. Finally, following examination of Mahalanobis distances compared to the critical cutoff value 15.08, four subjects were identified as multivariate outliers and removed from subsequent analyses. A total of 64 subjects was included in all subsequent analyses (M age = 20.38 years, SD = 2.02; 16 males and 46 females). The study was a 2 (perspective: first-person perspective and third-person perspective) × 2 (temporal distance: childhood and recent events) within-subjects design with no-imagination control condition included.

3.2.2. Procedure and materials

The procedure and materials from Experiment 1 were generally replicated in Experiment 2 with two changes. First, the LEI instructions at Time 1 and Time 2 did not include “prior to age 10” or any other age reference. Second, a total of six target LEI items was used in Experiment 2. In addition to the three target items used in Experiment 1, three target items were added: “got your finger shut in a door,” “been rescued from the water while swimming,” and “got stung by a bee.” In the intervening phase, subjects were guided to imagine two events as having occurred in childhood prior to the age of 10 and two events as having occurred more recently, within the past 3 years. Furthermore, two events were used for the no-imagination control condition. In each temporal distance condition one event was imagined from the first-person perspective and one from the third-person perspective with the assignment of target item to conditions and the order of presenting those conditions counterbalanced across subjects.

3.3. Results and discussion

3.3.1. LEI scores

Consistent with the results of Experiment 1, the mean LEI scores at Time 1, presented in the left half of Table 2, did not significantly differ across the five conditions, F(3.5, 208) = .780, p = .520, ηp² = .013 (Huynh–Feldt test was used due to a violation of the sphericity assumption). In addition, similar to the results of Pezdek et al. (2006) Time 1 ratings averaged 4.44 (on the 1 to 8 scale), reducing concerns about ceiling and floor effects in the baseline data. LEI change scores from Time 1 to Time 2 were analyzed next; these data are presented in the right half of Table 2. In the first analysis of LEI change scores, a 2 (perspective condition) × 2 (temporal distance) repeated measures ANOVA revealed that neither the main effects of
temporal distance nor that of perspective condition significantly affected LEI change scores. However, there was a significant interaction between perspective and temporal distance, $F(1, 63) = 5.819, p = .019, r^2_g = .085$ (Hotelling’s Trace). One-tailed planned contrasts were performed on the simple effects as our predictions were directional. As can be seen in Fig. 1, for childhood events, the third-person perspective ($M = .640, SD = 1.373$) led to significantly greater LEI change scores than the first-person perspective ($M = .203, SD = 1.471$), $F(1, 63) = 3.302, p = .037, r^2_g = .050$. On the other hand, for recent events, the first-person perspective ($M = .437, SD = 1.798$) led to greater LEI change scores than the third-person perspective ($M = .015, SD = 1.647$), but this latter trend was not statistically significant, $F(1, 63) = 1.880, p = .087, r^2_g = .029$.

In the second analysis of LEI change scores, two separate repeated measures ANOVAs were conducted to assess the difference in LEI change scores between both perspectives and the no-imagination control condition for childhood and recent events separately. Consistent with Experiment 1, for childhood events, significant differences in LEI change scores resulted among the three conditions, $F(2, 62) = 5.158, p = .003$ [CI95%: LL = 0.813, UL = 1.471]. Using one-tailed Bonferroni post hoc analyses, as our predictions were directional, LEI change scores were greater for the third-person perspective than the control condition ($M = .015, SD = 1.647$), but this latter trend was not statistically significant, $F(1, 63) = 1.880, p = .087, r^2_g = .029$.

On the other hand, for recent events, no significant differences among the three conditions resulted, $F(2, 62) = 2.334, p = .105, r^2_g = .070$.

The results from Experiment 1 were replicated in Experiment 2; compared to the no-imagine control condition, imagining childhood events inflated likelihood of occurrence ratings only when the events were imagined from the third-person perspective. However, with recent events, LEI change scores were greater when the events were imagined from the first-person than the third-person perspective, although these differences were not statistically significant. These results suggest that the findings of Experiment 1 generalize beyond just memory for childhood events; imagination inflation is more likely to occur when the visual perspective of an imagined event – and perhaps other phenomenological qualities of imagined events as well – is more similar to that of memories for related events.

3.3.2. Self-reported qualitative ratings of imagined events

A MANOVA was conducted to test the relationship between visual perspective (first-person and third-person) and temporal distance (childhood and recent events) on responses to the six phenomenological quality questions. The only significant effect was a main effect of temporal distance, $F(6, 54) = 3.590, p = .005, r^2_g = .285$; not surprisingly, images of recent events were easier to maintain than images of childhood events. But more important, neither the main effect of perspective, $F(6, 54) = 1.538, p = .184, r^2_g = .145$, nor the interaction of perspective and temporal distance, $F(6, 54) = 2.057, p = .074, r^2_g = .186$ was significant. These findings suggest that, as in Experiment 1, it was the visual perspective of the imagined event per se that affected ratings of the likelihood that each event had occurred and not qualitative differences in the intensity or detail of the images in the two perspective conditions.

4. General discussion

The results of these two experiments suggest that when the phenomenological characteristics of an imagined event – specifically here, those associated with visual perspective – are more similar to those of related events in memory, the imagined event is more likely to be considered to have occurred. We know from previous research that the third-person perspective is a common cognitive characteristic of recalled childhood events, and the first-person perspective is a common cognitive characteristic of recalled recent events (Nigro & Neisser, 1983; Robinson & Swanson, 1993; Sutin & Robins, 2007). Consistent with these findings, in the present study, whereas for childhood events, the third-person perspective led to significantly greater LEI change scores than the first-person perspective, for recent events, the first-person perspective led to greater LEI change scores than the third-person perspective, although this latter trend was not statistically significant.

It is especially impressive in our study that qualitative ratings of the imagined events did not differ between the two visual perspective conditions. We know from other studies that qualitative features of recalled memories can vary as a function of visual perspective used during recall (Mclsaac & Eich, 2002). However, the results of our study were not confined by these other dimensions of the imagined events, suggesting that it was the perspective per se that underlies our findings and not the intensity or detail of the images in the two perspective conditions. One reason for the difference between our findings and those of Mclsaac and Eich (2002) is that in their task the events that subjects rated were not autobiographical events but rather were a series of manual tasks performed in the context of one experimental episode. Our findings are consistent with and extend the model of Pezdek et al. (1997) regarding how autobiographical events are constructed in memory. According to this model, and consistent with the results of Pezdek et al. (1997, 2006), if a suggested autobiographical event is

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean LEI scores (with standard deviations), median, and minimum/maximum values for target items in Experiment 2.</td>
</tr>
<tr>
<td>LEI score at T1</td>
</tr>
<tr>
<td>M (SD)</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Childhood</td>
</tr>
<tr>
<td>Third-person</td>
</tr>
<tr>
<td>First-person</td>
</tr>
<tr>
<td>Recent</td>
</tr>
</tbody>
</table>

![Fig. 1. Mean LEI change scores (with 95% confidence intervals) as a function of the perspective conditions and temporal distance of the target events in Experiment 2. Interpretations of 95% confidence intervals are different from interpretations of standard error bars. Overlapping 95% confidence intervals can still be significant. On this point, see Belka, Fidler, Williams, and Cumming (2005).](Image 65x115 to 271x270)
first judged to be plausible, memory for this event can be constructed from details of the generic event script, as well as from details of related episodes of the event. Memory for the event thus becomes constructed from this related information in memory. The results of our current study are important because they extend this model and demonstrate further that imagining an event is more likely to inflate likelihood of occurrence ratings for that event if it has phenomenological qualities more similar to those of related events in memory. More specifically, imaging an event is more likely to inflate likelihood of occurrence ratings for that event if it is imagined from a visual perspective more similar to how the event-related information is retained in memory.

Following the suggestions of Goff and Roediger (1998), our findings also have implications for the potential role of familiarity and source monitoring error mechanisms in imagination inflation. On the one hand, the familiarity effect predicted that simply imagining a target event from any visual perspective will make the event more familiar, and the increase in familiarity is likely to be erroneously interpreted as an indication that the event actually occurred. On the other hand, the source monitoring error mechanism predicts that imagining an event from the visual perspective similar to how the event-related information is retained in memory reduces subjects' ability to distinguish properties of the imagined event from properties of related memories, thus inflating one's belief that the event actually occurred (Garry & Polaschek, 2000). The results of our study thus are better accounted for by the cognitive mechanism of source monitoring error rather than familiarity.

Similarly, Libby (2003) reported that imagination inflation was more likely to occur when the wording on the LEI test completed at Time 1 (e.g., “remember doing” elicited the first-person perspective; “happened to you” elicited the third-person perspective) encouraged the same visual perspective used during the subsequent imagination task at Time 2 (first-person versus third-person perspective). These results support the role of source monitoring error in imagination inflation because familiarity mechanisms do not explain the obtained interaction between LEI test instructions and imagination perspective. Our findings also support the contributions of source monitoring error to imagination inflation, evidenced by the interaction obtained between temporal distance and perspective used to imagine LEI target events. That is, source monitoring errors are more likely to occur and imagination inflation effects are correspondingly greater when the visual perspective of the imagined event more closely matches that of related events in memory, third-person perspective for childhood events and first-person perspective for recent events.

In our study we found that whereas for childhood events, likelihood of occurrence change scores were greater for third-person than first-person perspective, for recent adult events, likelihood of occurrence change scores were greater for first-person than third-person perspective, however, this latter trend was not significant. One possible account of the non-significance of this latter effect follows from the suggestion by Garry & Polaschek (2000) that recent events are generally less susceptible to imagination inflation than remote events. The absence of a significant difference in likelihood of occurrence change scores between the first-person and third-person perspective for recent events warrants attention in future research.

5. Conclusions

Imagining an autobiographical event can increase individuals' ratings of the likelihood that the event had occurred in their past. Two experiments assessed whether ratings of the likelihood that an autobiographical event had occurred were affected by instructions to imagine the event from the first-person versus third-person perspective. In Experiment 1 we found that an increase in likelihood of occurrence ratings from Time 1 to Time 2 resulted when imagination was from the third-person but not the first-person perspective. Experiment 2 assessed whether the temporal distance of the event (childhood versus recent) impacted the effect of imagination perspective on likelihood of occurrence ratings. Consistent with the findings of Experiment 1, for childhood events, there was a greater increase in likelihood of occurrence ratings when events were imagined from the third-person than the first-person perspective. On the other hand, for recent events, there was a non-significant trend of a greater increase in likelihood of occurrence ratings when imagination occurred from the first-person than the third-person perspective. These results suggest that imagination inflation is modulated by the visual perspective used during the imagination task and the temporal distance of the imagined autobiographical event.

It is important for future research to examine how generalizable these effects are to other phenomenological qualities. In addition to visual perspective, for what other phenomenological qualities of an imagined event is the similarity between the imagined event and related events in memory likely to affect likelihood of occurrence ratings? Our hope is that in this study, we have laid the groundwork for researchers to tackle this and other fascinating questions.

Appendix A

Life Events Inventory (LEI) used in this study with target items starred.

1. Been sick while at school
2. Shook hands with the President
3. Got mad at your family and ran away from home
4. Cried when you had to go to the dentist
5. Got your finger shut in a door
6. Got to play with the doctor’s instruments at a routine check-up
7. Won a million dollars
8. Were lost in a public place for more than one hour
9. Found a $10 bill in a parking lot
10. Had to report a fire
11. Felt an earthquake
12. Been sick and had to go to the hospital late at night
13. Been rescued from the water while swimming
14. Broke a window with your hand
15. Been stuck in a tree and had to have someone help you down
16. Won a toy at a carnival or fair
17. Gave someone a haircut
18. Got stung by a bee
19. Played for the NFL Lakers
20. Were almost hit by a car

References

